

Redirecting by Injector

 Robert E. Filman Diana D. Lee

 RIACS SAIC

 NASA Ames Research Center, MS 269/2 NASA Ames Research Center, MS 269/2

 Moffett Field, CA 94035 Moffett Field, CA 94035

 rfilman@mail.arc.nasa.gov ddlee@mail.arc.nasa.gov

Abstract

We describe the Object Infrastructure Framework, a sys-
tem that seeks to simplify the creation of distributed appli-
cations by injecting behavior on the communication paths
between components. We touch on some of the ilities and
services that can be achieved with injector technology,
and then focus on the uses of redirecting injectors, injec-
tors that take requests directed at a particular server and
generate requests directed at others. We close by noting
that OIF is an Aspect-Oriented Programming system, and
comparing OIF to related work.

1. Introduction

Traditional software system development is a mono-
lithic process. An organization building a software system
was presumed to know how it wanted that system to be-
have. The requirements for that behavior would flow down
to the construction of the underlying modules. Since the
modules were being built specifically for the system in
question, it was “straightforward” to get their developers
to obey rules and conform to defined standards. To the
extent that the system used an externally provided compo-
nent such as a GUI or database, the behavior of that com-
ponent could be ascertained and the use of that component
within the system shaped to match the external compo-
nent's actual behavior.

Software development has gotten more complex. Tech-
nologies such as CORBA and HTTP provide the glue for
building applications from distributed components. But
understanding the nuances of multiple components and
varieties of glue is itself an intellectual challenge. We can't
expect an application programmer, seeped in knowledge
of the application domain, to also become expert in the
intricacies of many components, even if the application
needs to use them all. Similarly, components impose their
own constraints on their usage. We want to develop sys-
tems from components but don’t want the artifacts of a
particular component manufacturer to permeate our de-

signs, rendering us eternally dependent on the whims, de-
mands and destiny of that vendor. We want components
that obey our policies—not to have to distort our systems
to match the policies of the components. And we want
ways to federate existing systems while still maintaining
overarching rules and procedures.

Distributed systems introduce additional complexity
beyond simple componentization. Developing a distrib-
uted system is more difficult because distributed systems
are concurrent and nondeterministic, because distribution
introduces many additional kinds of failures, because dis-
tribution is naturally less secure, and because distribu-
tion’s inherent decentralization is inconvenient to manage.
Distributed computing can be made simpler by making it
look more like conventional programming and by provid-
ing and automatically invoking correct implementations of
distributed and concurrent algorithms.

To deal with some of the difficulties of creating and
evolving distributed systems, we created the Object Infra-
structure Framework (OIF). We wanted ways to achieve
“ilities” such as reliability, security, manageability and
quality of service without burdening application pro-
grammers with the details of knowing how these ilities are
programmed and when to apply the ility action.

2. The Object Infrastructure Framework

The primary mechanism used in OIF is injecting behav-
ior on the communication path between components. This
effectively serves to wrap services with additional actions
at both the client and server ends. The following features
distinguish the OIF wrapping mechanism:
• Discrete injectors. Our communication interceptors are

discrete, first class objects. Therefore, they have (ob-
ject) identity and can be sequenced, combined and
treated uniformly by utilities.

• Paired injectors. An ility may require injecting behav-
ior on both the client and server of a distributed system.
For instance, authentication can be implemented by
having a server-side injector check the credentials gen-
erated by a client-side injector.

• Injection by object/method. Each instance and each

method on that object can have a distinct sequence of
injectors.

• Dynamic injection. The injectors on a stub can be
changed during the execution of a system, allowing, for
example, the placement of debugging and monitoring
probes or the replacement of old versions of software
with newer ones.

• Annotations. Annotations on requests and responses
provide a channel for inter-injector communications.
These annotations are name-value pairs. Injectors are
capable of reading and modifying annotations (and
reading and modifying the request arguments and target
function name).

• Thread contexts. Our goal is to keep the injection
mechanism invisible to the functional components.
However, sometimes clients and servers need to com-
municate with injectors. We make annotations largely
transparent to functional components by providing an
alternative communication channel. Each client and
server thread has annotations, its thread context. The
system arranges to copy annotations among the client’s
thread context, the request, and the server’s thread con-
text.

• High-level specification language and compiler. To
span the gap between abstract ilities and discrete
sequences of injectors we created a compiler, Pragma,
that takes a high-level specification of desired
properties and ways to achieve these properties and
maps that specification to an appropriate set of injector
initializations.
Figure 1 illustrates the relationship of injectors to

CORBA skeletons and stubs. A more complete discussion

of the motivation for these features can be found in
reference [5].

3. Injectors

OIF injectors work with CORBA stubs and skele-
tons that have been modified to obtain the injector
sequence for each method and to invoke the first
injector in that sequence with (1) a (classical
CORBA) request object that includes (a) the target
server, (b) the operation to be performed on that
server, (c) the arguments of that operation, and (d) a
set of annotations for this operation, and (2) the con-
tinuation: the set of injectors to be executed after
this injector. Annotations are name-value pairs,
where the name is a string and the value, any
CORBA value. The injector can modify the target,
the operation arguments, the annotations, and the
return value. It can also invoke arbitrary other re-
mote calls, and can itself be a CORBA-visible ob-
ject, capable of handling service requests from other
sites.

Grossly, an injector wants to perform some ac-
tions before the server action and some after. It is the re-
sponsibility of an injector to invoke the remaining injec-
tors of the continuation between its before and after ac-
tions (that is, to call the “next” operation on the continua-
tion.) This structure allow injectors to alter the flow of
control in interesting ways—for example, to forgo calling
the after injectors (as is done in the caching injector, which
uses its cache of prior service calls values to avoid redun-
dant calls) and to use the natural exception-catching
mechanisms to catch (and correct) exceptions in the con-
tinuation processing.

Injectors can be used for achieving ilities such as reli-
ability, security, manageability and quality of service, and
can also be profitably employed in improving the compu-
tational efficiency of distributed systems. Table 1, from [7]
list some applications of injectors.

Space limitations preclude a detailed description of
OIF’s implementation. Briefly, OIF has an alternative IDL
compiler whose proxies include calls to the proxy-specific
sequence of injectors. An injector maintains the request
object/annotation/thread-context relationships. Pragma
works by creating initialization tables for the mapping
from interface classes and methods on those interfaces to
the sequence of injector factories to be invoked in creating
a stub. Figure 2 illustrates the process and structure of
building an OIF application. This figure shows that the
application IDL and the OIF Pragma specification are run
through the IDL and Pragma compilers, creating code that
is linked with the application code and elements of injector
libraries to make the complete application. Reference [4]
has more detail on these mechanisms.

Authen.Authen.

RetryRetry

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Stub

Check auth.Check auth.

QoSQoS

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Skeleton

ClientClient ServerServer

Client-
Side

Proxy

Server
-Side
Proxy

Network
Figure 1: Injectors on stubs and skeletons

4. Redirecting injectors

A client-side injector can change the destination
of a request, or use the occasion of a request as a
reason for generating requests to other objects. This
suggests several possibilities
• A rebind injector can catch failures on the part

of the original target and redirect the request to
another target that offers the same service. This
process can be repeated through the set of alter-
native service providers known to the injector.

• An impatient injector, knowing of several targets
that offer the same service, can simultaneous
send the same request to them all of them. (Of
course, if every object was impatient, perform-
ance would suffer. Ironically, under straightfor-
ward charging policies for priority service, the
appropriate local behavior is to be impatient at
low priority [2].)

• An insecure injector sends the same request to
several targets offering a service and combines their re-
sponses. For example, such an injector might average
numeric values, take a majority vote or infer the intent
of a service on the basis of its perforation.

• A mediating injector partitions the problem into sub-
problems, sends the requests for different parts of the

subproblems to appropriate targets and combines their
answers back into a whole.

• A balancing injector knows several targets that offer the
same service and sends the request to one with the hope
of balancing the overall system load. This decision
might be based on a random selection from the possible
targets, on a learning algorithm working off the injec-

Table 1. Injector applications

Ility Injector Action
Security Authentication Determines the identity of a user.
 Access control Decides if a user has the privileges for a specific operation.
 Encryption Encodes messages between correspondents.
 Intrusion detec-

tion
Recognizes attacks on the system.

Reliability Replication Replicates a database.
 Error retry Catches network timeouts and repeats call.
 Rebind Notices broken connections and opens connections to alternative

servers.
 Voting Transmits the same request to multiple servers (in sequence or par-

allel) combining the results by temporal or majority criteria.
 Transactions Coordinates the behavior of multiple servers to all commit or fail

together. Requires additional interface on application objects.
Quality of

service
Queue-manager Provides priority-based service.

 Side-door Provides socket-based communication transparently to application.
 Futures Provides futures transparently to the application.
 Caching Caches results of invariant services.
Manageability Logging Reports dynamically on system behavior.
 Accounting Reports to accounting system on incurred costs.
 Status Accrues status information and reports when requested.
 Configuration

management
Dynamically test for incompatible versions and automatically up-

dates software.

IDL Code

OIF library

Linked together to build the
run-time system

Pragma

OIF-generated

OIF
Stubs

OIF
Initialization

Compiler

OIF
Pragma
Compiler

OIF
IDL

Compiler

Compiler

Application
code

Application
Pragma

Application
CORBA IDL

User written

Injector
Library
Injector
Library

Key:

Figure 2. The process structure of an OIF application.

tor’s historical experience with the targets, or on an ex-
ternally provided “traffic report” on the load on various
targets. The balancing injector might itself become a
source of traffic information to its correspondents [8].
[Clearly, traffic information is of more use for requests
that take a long time (e.g., compute this computational
fluid dynamics problem), than for ones that can be han-
dled quickly (e.g., what’s the price of this stock right
now.)]
The notion of a redirecting injector raises the question,

“How does the redirecting injector know where to redi-
rect?” The question is not as trivial as it sounds. There are
four reasons we may not be able to get the redirection in-
formation from the target object:
• The target may not possess an interface for such ques-

tions. The provider of a stock-quote service built a
component to provide stock quotes, not to provide a list
of providers of stock quotes.

• The alternative services may be competitors. That is,
the stock quote provider is likely (for whatever eco-
nomic reason) to want to be the one providing the client
with stock quotes.

• The target may not even know of the existence of the
alternative services, or even understand that a particular
service, with the right mediation, can be used as a sub-
stitute for its computations.

• The reason we’re often seeking an alternative provider
is often precisely because the original target has failed,
making it a poor candidate for providing advice.

We note two additional complications.
• References to objects can arrive through complex com-

positions of method call arguments and return values.
We do not necessarily obtain a reference to an object di-
rectly from that object itself.

• In general, we want to say more about an object than
just alternatives that provide the same service—we may
also want information about an object’s accuracy, reli-
ability, security problems, congestion, and so forth.
This commentary may be generated dynamically as the
application runs, and is likely to come from other com-
ponents “sharing” their experiences. We ought to ex-
pand any mechanism that works for redirection infor-
mation to these other forms of commentary.
In the following discussion, we define a clerk as a

component that is a database of commentary. That is, we
imagine some calls to a clerk are of the form: “Assert a
property P of component X is y,” and others are “Query
what is (or are) the values of the P property of X?”

Possibilities for organizing the sharing of commentary
include
• A component in need of commentary about an object

could appeal to a famous (globally well-known) clerk.
In some sense, directory and search engines such as
Yahoo and Google serve this purpose for the Internet as
a whole; imdb.com (the Internet Movie DataBase) and

deja.com (Usenet) are repositories of user commentary
on particular topics. Famous clerks have the advantage
that they can be programmed as “constants” into appli-
cations and that the keepers of these clerks are likely to
keep them running. They have the disadvantage of mak-
ing public all shared information and of focusing (by
providing easiest access) on information the clerks
deem interesting.

• The developer of an application could set up one or
more application-specific clerks. Components created in
that application could know, from their initiation or
other methods, of the existence of these clerks. This has
the advantage of being a straightforward solution for
tightly integrated applications, but the disadvantage of
demanding common knowledge among the components
of a loosely-coupled application.

• A component could keep track of the components with
which it had communicated (its acquaintances). Need-
ing information about an object, the component could
query its acquaintances recursively until one was found
with the necessary information. After all, if we’ve come
to know of an external object, it must be because one of
our acquaintances told us about it. (This querying could
be done either in a distributed fashion, by marking the
query message with a unique symbol and having que-
ried acquaintances not propagate messages they had
seen before, or in a centralized fashion, where the query
for information returned either the information or the
set of acquaintances who might have the information, to
be poked again by the original inquirer.) More clever
implementations of these algorithms might cache in-
formation such as the answers to commonly asked ques-
tions (e.g., “Do you have an alternative server for A?”
and “Who are your acquaintances?”) The disadvantage
of this approach is that it can imply a considerable
amount of dynamic work on raising a question—we
would be actively and unboundedly searching the net-
work, and might also require a considerable amount of
intermediate storage to keep track of acquaintances,
cached answers and recent questions.

• Better than relying on famous clerks, the application
might arrange dynamic clerks. That is, component crea-
tion would require the creation, assignment or location
of a local clerk for that component for each variety of
commentary. Injectors on components would communi-
cate their clerk as part of the annotations of their ordi-
nary requests; clerks would be informed of the discov-
ery of new, previously unknown clerks, and the clerks
themselves made responsible for organizing themselves,
keeping commentary about components, and answering
questions about this commentary.
We are currently implementing redirecting injectors,

and have allowed ourselves to be distracted into exploring
this last alternative. Clearly, clerks could search among
themselves for commentary they lack. The problem is not

as bad as such search at the component level, as there are
likely to be far fewer clerks than components, but the
prospect of doing dynamic, unbounded search is unset-
tling. As an alternative, we are currently implementing the
Captain algorithm. Clerks associate information with ob-
jects. A community of clerks, where each member of the
community knows of all the others, can partition the com-
mentary about all objects among themselves, relying on a
hashing or b-tree algorithm to quickly determine which
community member stores the information about a specific
component. When two otherwise disjoint communities
learn about each other, they need to reorganize their
collective information. This reorganization happens under
the supervision of one of the community’s captains. Com-
plexity arises in this algorithm if while two communities
are merging, another community is discovered. To handle
such situations, Captain does the reorganization transac-
tionally.

5. Aspect-oriented programming

We have described a mechanism for separately specify-
ing system-wide concerns in a component-based pro-
gramming system and then weaving the code handling
those concerns into a working application. This is the
theme of Aspect-Oriented Programming (AOP). OIF is an
instance of AOP, and brings to AOP a particularly elegant
division of responsibilities. Key work on AOP includes
Harrison and Ossher’s work on Subject-Oriented Pro-
gramming [8] which extends OOP to handle different sub-
jective perspectives; the work of Aksit and Tekinerdogan
on message filters [1], that reifies communication inter-
ceptors; Lieberherr’s work on Adaptive programming [12]
that proposed writing traversal strategies against partial
specifications; and Kiczales and Lopes [10] work on lan-
guages for separate specifications of aspects, which effec-
tively performs mixins at the source-code language level.

In reference [6], we argued that the two primary
mechanisms for implementing AOP systems are “clear-
box” approaches, where a compiler or interpreter exam-
ines the source of the application and can arbitrarily ma-
nipulate that source, and “black-box” (or wrapping) ap-
proaches, where the aspect mechanism is arranged as a
layer around the component, achieving aspects by manipu-
lating what goes in and out of the component. Like mes-
sage filters [1], Aspect Moderator [2] and Synchroniza-
tion Rings [10], OIF seeks AOP by wrapping.

The idea of intercepting communications is not new to
AOP. Perhaps the earliest examples were in Lisp: the In-
terlisp advice mechanism and mix-ins of MacLisp. A more
modern realization is seen in mediators [14], which recog-
nizes the implicit agent-hood of the communication inter-
ception elements.

More recently, the CORBA standard has been extended
to provide interceptors, programmer-defined operations

that run in the communication path. From our point of
view, this is the right idea, wrongly implemented. CORBA
interceptors run after the call’s arguments have been mar-
shaled, making them opaque to the interceptor code
(though well-situated for encryption). CORBA intercep-
tors are also considerably more structurally rigid than the
OIF framework’s injectors, not being objects to be ma-
nipulated at run-time. If one is particularly fond of
CORBA interceptors, one can view our work as a method-
ology for using them.

Thompson et. al [13] present an OIF-like use of injec-
tor-like plug-ins in a web architecture. Examples of uses
of these plug-ins include performance monitoring and col-
laborative documents.

It is common to tackle ility concerns by providing a
framework with specific choices about those concerns.
Examples of such include transaction monitors (e.g., En-
cina, Tuxedo) and distributed frameworks like Enterprise
Java Beans and CORBA.

6. Concluding remarks

We have taken an aspect-oriented approach to injecting
reliability into a distributed system. Our black-box ap-
proach lends itself readily to integrating components
whose source code may not be available. Furthermore,
because black-box techniques do not depend on particular
implementation of components, the result is generally
more reusable and maintainable than clear-box methods.
We have demonstrated the ideas of OIF in the context of
CORBA distributed systems. However, the basic ideas of
intercepting communications (wrapping), annotating re-
quests, reifying interceptors, dynamically choosing which
intercepts to run and providing high-level specification
mechanisms to mapping injector requirements to code can
be applied to any other environment where a wrapping can
be imposed on program elements.

We have successfully demonstrated reliability in the
form of error recover, redundancy, mediation, and load
balancing; we have also demonstrated these mechanisms
are extensible to other concerns such as security, quality of
service, and manageability.

In studying reliability, we have come to understand that
there is a special complexity of finding alternate servers.
One of the goals of this paper has been to broach the ques-
tion of arranging for decentralized shared knowledge in
peer-based communicating systems. We have proposed
one model for such shared knowledge that relies on impos-
ing additional structure into remote calls but suggests no
other shared information. In OIF, this imposition is
straightforwardly arranged by the addition of an injector.
Other approaches are possible. For example, a system
generating its own communication mechanism could build
such tracability into its natural structure. It remains to be
seen whether such zero-common-knowledge shared anno-

tation will prove important to some class of future applica-
tions.

7. Acknowledgments

Our thanks to Tarang Patel and Alex Shaykevich for
their comments on the drafts of this paper.

8. References

[1] M. Aksit and B. Tekinerdogan, “Solving the modeling prob-
lems of object-oriented languages by composing multiple
aspects using composition filters”, In S. Demeyer and J.
Bosch (Eds.), Object-Oriented Technology ECOOP’98
Workshop Reader, Springer-Verlag, Berlin, 1998
http://wwwtrese.cs.utwente.nl/Docs/Tresepapers/FilterAspe
cts.html

[2] A. Bader, C.A. Constantinides, T. Elrad, T. Fuller, and P.
Netinant, “Building Reusable Concurrent Software Sys-
tems”, Proc. Int’l Conf. on Parallel and Distributed Proc-
essing Techniques and Applications, CSREA Press, Las
Vegas, 2000, Vol II, pp. 845-851.

[3] A.M. Bell, W.A. Sethares, D.L. Reiley, D. Wolpert, K.
Tumer, and J. Frank, “Strategic Behavior, Learning and the
Efficient Allocation of Network Resources”, The Interna-
tional Congress on Networks, Groups and Coalitions, Man-
resa, Spain, May 1999.

[4] R. Filman, “A Software Architecture for Intelligent Synthe-
sis Environments”, Proc. 2001 IEEE Aerospace Confer-
ence, Big Sky, Montana, March 2001.

[5] R. Filman, S. Barrett, D. Lee, and T. Linden, “Inserting
Ilities by Controlling Communications”, Communications of
the ACM, in press. http://ic-www.arc.nasa.gov/ic/darwin/
oif/leo/filman/text/oif/oif-cacm-final.pdf

[6] R.E. Filman and D.P. Friedman, “Aspect-Oriented Pro-

gramming is Quantification and Obliviousness”, Workshop
on Advanced Separation of Concerns, OOPSLA 2000, Oc-
tober 2000, Minneapolis. http://ic-www.arc.nasa.gov/ic/
darwin/oif/leo/filman/text/oif/aop-is.pdf

[7] R.E. Filman, D.J. Korsmeyer, and D.D. Lee, “A CORBA
Extension for Intelligent Software Environments,” Advances
in Engineering Software 31 (8-9), 2000, pp. 727-732
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/
williamsburg-print-final.pdf

[8] R. Filman, and T. Linden, “SafeBots: A Paradigm for Soft-
ware Security Controls,” Proc. ACM New Security Para-
digms Workshop, Lake Arrowhead, CA, September 1996,
pp. 45–51.

[9] W. Harrison, and H. Ossher, “Subject-Oriented Program-
ming (A Critique of Pure Objects)”, Proc. OOPSLA ’93.
ACM SIGPLAN Notices 28 (10) 1993, 411-428.

[10] Holmes D., Noble J. and Potter J., “Towards Reusable Syn-
chronisation for Object-Oriented Languages”, Aspect-
Oriented Programming Workshop, ECOOP'98, 1998
http://www.mri.mq.edu.au/~dholmes/research/aop-
workshop-ecoop98.pdf

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Pro-
gramming”, In Proc. ECOOP ’97, LNCS 1241,: Springer-
Verlag, Berlin, 1997, pp. 220-242.
http://www.parc.xerox.com/ spl/projects/aop/tr-aop.htm

[12] K. Lieberherr, Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns, PWS Publish-
ing Company, Boston, 1996.

[13] C. Thompson, P. Pazandak, V. Vasudevan , F. Manola, M.
Palmer, G. Hansen, and T. Bannon, “Intermediary Architec-
ture: Interposing Middleware Object Services between Web
Client and Server”, Computing Surveys, in press.
http://www.objs.com/OSA/Intermediary-Architecture-
Computing-Surveys.html

[14] G. Wiederhold, “Mediators in the Architecture of Future
Information Systems”, IEEE Computer 25, 1992, pp. 38-49.

